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Abstract. T l i s  paper presents mathematical models for the micellization and adsorption 
processes that occur in many surfactants solutions, and which confer the fundamental 
characteristics of these solutions. The viability of the models is demonstrated by reference 
to experiment, using bath theoretical and numerical analysis, whilst the detailed thermody- 
namics incorporated in the modelling permits a quantitative investigation of the kinetics 
of the processes. In particular, the interplay between diffusion and reaction rates, and the 
implication of this on certain modelling assumptions, is studied, and the effect of various 
physical parameters, on both kinetic and equilibrium behaviour, quantified. An important 

study, and these are outlined in the paper. 
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1. Introduction 

Interfacial properties of surfactant solutions such as soaps, detergents and emulsifying 
agents are largely determined by the process of micellization and adsorption exhibited 
b y  these colloidal systems. It is therefore important to understand the mechanisms by 
which these processes occur, and to be able to quantify their effects. A model for 
micellization-the process of agglomeration by which individual surfactant molecules 
(monomers) combine to form larger molecular groups (micelles)-is presented in 
section 2. This follows [SI and consists of the so-called Becker-Doring (ED) coagula- 
tion-fragmentation equations, together with thermodynamic models for the rate 
coefficients involved. The model is analysed in section 3, where it is shown to predict 
many important, experimentally observed, micellization characteristics. In section 4 
adsorption processes are considered, and a micellization-adsorption model proposed. 
This model involves a novel adsorption equation, and analysis of this shows how it 
may be considered a generalization of the widely used Langmuir isotherm relation. 
The analysis indicates when this isotherm expression may be considered a valid 
approximation to the more general equation, and thus provides insight into the 
underlying physical processes. An efficient numerical scheme for treating the large 
system of reaction-diffusion equations of the micellization-adsorption model is out- 
lined in section 5 and results presented. Finally, in section 6, the problem of modelling 
turbulence in conjunction with micellization and adsorption is addressed. A simple 
extension of the previous model is proposed and some numerical results considered. 

2. The stepwise association model: Becker-Doring equations 

In  many surfactant solutions the dominant mechanism by which micellization occurs 
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is that of stepwise association-dissociation, and the process may be modelled by the 
BD equations [a] 
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m 

e, = J, - J , + ~  r =  2 , 3 , .  . . 
where C,(t) denotes the concentration of micelles containing r monomeric units at .:-_ ~ i m r  i, a i d  

J, = a,_,C,C,_, - b,C, r = 2 , 3 , .  . . (2) 
for suitable rate coefficients a,-,, b,. These equations have been the subject of much 
theoretical research [Z, 4,5,7, 161. We note here that if satisfy the BD equations 
then the total surfactant density p = Z?=, rC, remains constant (see [SI). We are 
concerned here with dilute micellar systems. For these, agglomeration is diffusion 
limited [8] so that we may write a, = a (constant) r = 1,2,. . . . The b, may be modelled 
through the use of chemical potentials. We may write (see [8, 181) 

where =Z?=l (?, ((?, being the equilibrium value of C,), R is the universal gas 
constant, T the temperature and q,=p!+, -pf  (p!  being the standard chemical 
potential of micelles of size r). The q, may be modelled (see [3, 81) for certain positive 
constants A, B and D :  

vr  A+$Br’/’+$Dr”’ r =  l , Z , .  . . . (4) 

This representation for q, completes the specification of the micellization model (up 
to the constants A, B and D ) .  The following analysis demonstrates the suitability of 
this model and, in addition, allows estimates for A, B and D to be computed. 

3. Analysis of the micellization model 
- 

From coxsideratb Gf eq-a!icx (3) it is. easy :G ShW that c,+, < c,e7,> f i ,  , axd 
from equation (4) the graph of 7. is seen to be of the form shown in figure 1. Thus, 

t 

r 

Figure 1. The graph of 7,. 
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provided qmin, a distribution of equilibrium concentrations as in figure 2 is 
obtained. This is known to be constant both with experimental findings [l], and other 
equilibria thermodynamic treatments [ 121. By reference to such results, the coefficients 
A, B and D may then be fitted. Taking rI = 10, r,= 50, r, = 100 as typical, and with 
T=300 K, fi:  = lo5 J mol-' and U = 10" (mol I- ' ) - '  s-', it is easily shown (see [171) 
that suitable values for these coefficients are A =  0.167 814x lO'J mol-', B = 
0 . 1 4 2 0 1 0 ~ 1 0 ~ J m o l ~ '  and D=0.523 171x104Jmol-l. 

The phenomenon of a critical micellization concentration (CMC) is also predicted 
by the model. Solving a truncated equilibrium system (truncated at r =  N (=ZOO) by 
setting cr = 0 for r > N), and with the parameter values quoted above, the results of 
figure 3 were obtained. ( N  = 200 is taken since, for most systems, micelles of greater 
size do not occur in measurable quantities.) 

These results fit in well with the concept of a CMC. Further, the predicted temperature 
dependence of this critical value is as expected for non-ionic surfactants [Ill-the 
onset of agglomeration being repressed by an increase in temperature. 

r 

Figure 2. The distribution of C. 

I \ r = m  K 

- 2 ,  
-7 - 6  -5 - 4  

loglpl  

Figure 3. The dependence of c, on p ,  
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Finally, we can simulate the effect of a perturbation experiment by specifying initial 
concentrations distinct from the equilibria, and then solving, numerically, the dynamical 
system (1) (truncated at some CN). A natural choice for an initial concentration 
distribution is one corresponding to  an equilibrium state prior to perturbation. Further, 
since scaling the forward rate coefficient 01 does not affect the equilibrium profile, the 
effects of such a scaling on micellization kinetics may he investigated. 

Taking N = 200, T = 310 K, with an initial distribution obtained as an  equilibrium 
state for T = 300 K, and using a simple predictor-corrector numerical scheme the 
results of figures 4 and 5 were obtained. These not only show the influence of (I on 
re-equilibration kinetics but also the existence of two distinct relaxation times (only 
relaxation curves for micelles of size 100 are depicted as micelles of other sizes show 

"1 
3 075 

0 50 

0 1  . , , , , , , , , , , , , , , , , , , , 
1 r W '  

t l l l  

Figure 4. C, relaxation kinetics 

' "I 

0 50' 

0.25' 

0 1  
1.0 

t is1 

Figure 5. C,, relaxation kinetics. 
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similar response characteristics). This is in quantitative agreement with experimentation 
PI. 

This micellization model is next extended to incorporate the inevitable adsorption 
processes that occur at interfaces of a surfactant solution. The interaction between the 
two processes can then be investigated. 

4. A mieellieation-adsorption model 

For a micellar system exhibiting no convective Row, a rectangular symmetry and with 
a plane interface, say at x = 0, we have a micellization-adsorption model given by the 
system of reaction-diffusion equations 

a a2 
- CAX, 
at 

x>O f > O  r = 1 , 2 ,  . . .  ( 5 )  = D , S  C,k  [)+ C(x ,  t )  

where 0, denotes the diffusion coefficient for micelles of size r, and C,(x, f )  is the rate 
of change C, due to micellization as modelled by spatially dependent ED equations 
(cf equation (1)). Denoting the surface concentration of adsorbed monomer at x = O  
by T ( f )  then the mass balance boundary conditions for this model are 

a 
ax 
-C,(O, t ) = O  1 7 0  r = 2 , 3 ,  ... 

lim - C,(x, f )  = O  f > O  r = l , 2 ,  ... 
--(a: ) 

Suitable initial conditions are 

C,(X, 0) = c, x>O r = l , 2 ,  

and 

r(o) = 0. 
Here {c,}:=, are the spatially homogeneous equilibrium solutions of the ED equations. 

A model for the adsorption process will, typically, be an equation of the form 

r(t) ,  r ( f ) , A ( t ) ,  A ( f ) ,  DI f > O  (7) 

where h is the subsurface concentration of monomer. The form of equation (7) used 
here is that proposed in [14,15], and is given by 

- U t ) =  d k , A ( f ) (  1-y) - k 2 r ( f )  
dt  

where k, and k2 are rate constants for adsorption and desorption, respectively. An 
important feature of this last equation lies in its connection to the more frequently 
used Langmuir isotherm adsorption relation [ 101 
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Letting f + 00 in equation (8) we obtain the equilibrium Langmuir relation 
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where y = kl/k2f.  This suggests that equation (9) is an approximation to equation (8) 
and, in view of the wide application of the Langmuir isotherm, it is important to know 
when such an approximation is permissible. By combining equations (8) and (6) and 
performing some standard non-dimensional and perturbation analysis it can be shown 
(see [ 15,171) that equation (9) does indeed represent a valid approximation to equation 
(S), provided 

A being some characteristic length scale. Noting that timescales for adsorption, desorp- 
tion and diffusion are given by h l k , ,  I lk2  and A2/D, ,  respectively, we see that the 
above constraints correspond to  the requirement that timescales for adsorption and 
desorption are much smaller than that for diffusion. In most cases of practical interest 
these conditions do in fact hold and the Langmuir isotherm, equation (9) becomes an 
acceptable alternative to equation (8). 

5. Numerical analysis of the micellization-adsorption model 

Attention here is restricted to the use of finite-difference techniques for obtaining 
numerical solutions of the micellization-adsorption model proposed in the preceding 
section. As with the simple micellization model of section 2 ,  it is first necessary to 
truncate the systems of equations involved at some value of N. Since, as previously 
noted, N = 200 represents a realistic value, the size of the resulting systems becomes 
a significant factor in the choice of numerical scheme; ways to reduce computational 
time must be considered. Firstly the use of a non-uniform spatial grid is natural since 
the nature of the adsorption process leads to large concentration gradients close to 
the adsorbing surface (x = 0), which decrease with increasing distance from this surface. 
A suitable discretization for x is, therefore 

xi = ."( $ ) p  i = 0, 1, . . . , m 

where x"7  0 is sufficiently large to be considered infinitely far from x = 0, M is a 
positive integer defining the number of grid points to be taken, and p >  1 provides the 
transformation from a uniform to a non-uniform grid. Secondly, by approximating the 
BD reaction terms C,, r = I ,  2 , .  , . , N using 

N . .  
C ; ; -  - (CYC:.~C:,~'-b2C~~')-  ( ~ l C i ~ C $ - b , C i , ; l )  

r=2  

C!,! 
C ~ , i - a C : , j C l , _ , , j - b N C ~ , ,  
where C;,; = C,(x;, t,), together with standard difference approximations for the t and 
x derivatives in the reaction-diffusion equations, we obtain N systems of linear 
equations which, if considered sequentially ( r  = 1, r = 2, etc.) form easily solved 
tridiagonal systems. 

(CYC{;C!- , , ( -  b,C$) - ( o ~ C { , ~ C ! . ~  - b,+lC!Zi,;) r = 2 , 3 , .  . ., N -  1 

i =  1,2, .  . . , M - 1  
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To test this approach we begin by considering a single solute (non-aggregating) 
system and taking, as an adsorption equation, the linear isotherm relation 

K being some isotherm constant. The linearity of the resulting model then permits the 
analytic solution 

U t )  = KA(t) 120 

Kx+D,t Kx+ZD,t C,(x, r )  = C, [ 1 -exp ( K2 ) e * c ( 2 K m ) ]  

so that 

K = l O - b  

z 0.7 
L 

c 
L 

0.5 i I  

K = l O - b  0.9 

L 

c 
L 

z 0 . 7 .  

0.5. 
KslO-’ 

0.3;/ n Y .  .< I 0 5 10 15 20 

tlrl 

Figure 6. Analytic adsorption curves far K = and 10-5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 5 10 15 20 

t l S 1  x10-L 

Figure 7. Numeric adsorption curves for K = and IO-’. 
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Figure 6 shows two adsorption curves obtained from this solution using different values 
of the parameter K. Increasing K is seen to decrease the relative adsorption rate. This 
follows since, from the equilibrium relation r " = K C , ,  we see that K reflects the 
adsorptive capacity of the surface for a given CI. Corresponding numerical results 
computed using the iterative semi-implicit finite-difference approach outlined above 
are presented in figure 7. Good agreement with the analytical results is evident, 

Applying the scheme to the full micellization-adsorption model, using the Langmuir 
relation (9) and with 7 = 300 K, D,  = 2 X lo-' m2 s-', D. = 6 X lo-' m2 s- ' (r  > l) ,  y = 
IO3 m3 mol-' and? = mol m-2 (with other parameter values as forthe micellization 
model of sections 2 and 3), the results of figures 8 and 9 were obtained. These show 
the effects of variations in p and a upon adsorption rates. As can be seen, adsorption 
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1.25 4 

0 1 0  
t k l  

Figure 8. Adsorption rates for p :  10-2mol I-' and different values of U. 

0 1.0 

Figure 9. Adsorption rates for p = IO-' mal I-' and different 
f l S 1  

values of a. 
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rates decrease with both p and a. Bearing in mind that the surfactant concentrations 
used here are well above the CMC (see figure 3) this is, qualitatively, as one might expect. 

In reality, of course, most surfactant solutions are likely to exhibit convective 
transport and, that being the case, we conclude by considering how turbulent convection 
might be modelled within the foregoing model. 

6. Model including turbulent convection 

With the addition of convection the general transport equations to be considered 
would he 

d - c, = D,V2C,+ c, -v . (C$)  
J t  

f > O  r = l , 2 ,  ... 

where U denotes the fluid velocity. 
As we require U to be descriptive of some form of turbulence, one approach, 

following [SI (see also [13]), would he to simulate U statistically from a multivariate 
normal distribution in such a way that the expected value, E[u], was zero. The fluid 
flow would then be 'statistically stationary'. Further, by adopting a two- or three- 
dimensional model U could also be generated in such a way as to guarantee incompressi- 
bility, i.e. such that V . U = 0 at each instant [9]. There are, however, several difficulties 
with (and objections to) this approach in the present context. Firstly, a two- or 
three-dimensional model would be computationally very expensive to study and, in 
addition, it is not clear precisely which geometries would be relevant. Secondly, the 
validity of specifying independent fluid velocities to arbitrarily close points (in space) 
is questionable. Also, it does not seem sensible to allow fluid velocities close to an 
interface to be arbi!:a:'.!y ! q e  ix z ~ g n i t ~ ! e .  !z r i c w  af !!we rc-arts. w e  prefer to 
retain a one-dimensional model, namely 

J J' - C, = D , ,  C,+ 6, - 
J t  Jx 

and to model u(x, 1 )  as 

X 
u(x ,  1 )  =- U " ( t )  O < X < X "  

Xm 

where, as before, x"> 0 represents a distance to be considered 'infinitely far' from the 
surface, and 

U y t )  - N(0,  U') for each instant f ,  

In this way we ensure zero velocity at the interface and the flow becomes both 
'statistically stationary' and 'statistically incompressible'. 

Numerics for this model are straightforward extensions of those for the previous 
diffusive transport model and results can then be compared with those already obtained. 
Output obtained suggests that the addition of this type of turbulence has little, if any 
effect, upon adsorption rates. Figures 10 and 11 show some typical results. Figure IO 
shows the result from a single simulation of the turbulence model and figure 11 the 
result averaged over 50 such simulations. 

The difference between the adsorption curves depicted in figure 11 is, in a sense, 
a maximum: it is not affected by further increases in the turbulence parameter U, 
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1.00 { 

0.75 

0 50 

0 25 

0 0.5 
t l S  i 

Figurr 10. The effect of turbulence on adsorption: result fmm a single simulation. Full 
line, adsorption with turbulence; broken line, adsorption with no turbulence. 

t l S l  
Figure 11. The effect of turbulence on adsorption: result averaged aver 50 simulations. 
Full line, adsorption with turbulence; broken line, adsorption with no turbulence. 

1. Conclusions 

Models for the micellization and adsorption processes that occur in surfactant solutions 
have been proposed, and the viability of these demonstrated-theoretically and numeri- 
cally. The micellization model involves detailed, thermodynamically derived, 
expressions for the reaction rate coefficients, and this has allowed a quantitative study 
of the influence of various physicalfmodel parameters on both the kinetic and 
asymptotic behaviour of the process. In modelling adsorption a non-equilibrium 
adsorption equation has been proposed and studied. This equation has been shown 
to constitute a model for the adsorption process that is more general than that provided 
by the often used Langmuir isotherm. By studying the relation between the two we 
have derived specific constraints on the use of the Langmuir isotherm as an approxima- 
tion to the more general equation. An efficient numerical scheme for studying the 
dynamics of the micellization-adsorption model has been devised and discussed, and 
results produced from this presented. These indicate the value of the models as a 
means of studying and quantifying the roles of the various parameters that characterize 
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colloidal systems. Finally, we have considered one way in which turbulent convective 
transport might be modelled in the context of micellization-adsorption, and presented 
results produced by this approach. 
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Appendix. Glossary 
coefficients in the model for qr 
concentration of micelles of size r 
discretized value C,(xi, 1,) 
equilibrium value of C, 
rate of change of C, due to micellization 
total micellar concentration I:=, C, 
equilibrium value of C 
diffusion coefficient of micelles of size r 
contribution to C, from association of micelles of size r -1  and 
dissociation of micelles of size r 
linear isotherm constant 
number of grid points in spatial discretization 
truncation point for micellar size range 
universal gas constant 
temperature 
forward rate coefficient for the micellization process 
backward rate coefficient for the micellization process 
adsorption and desorption rate coefficients 
scaling parameter for non-uniform grid formation 
fluid point velocity 
fluid point velocity at xm 
point ‘infinitely distant’ from interface x = 0 
surface concentration of adsorbed monomer 
equilibrium value of r 
saturated surface concentration of adsorbed monomer 
subsurface concentration of monomer 
equilibrium value of A 
forward rate coefficient for diffusion-limited micellization 
Langmuir isotherm parameter 
difference between the standard chemical potentials of micelles of sizes 
r + 1  and r 
minimum value attained by q, 
characteristic length scale for monomer diffusion 
chemical potential of micelles of size r 
equilibrium value of p, 
standard chemical potential of micelles of size r 
total surfactant density 
turbulence parameter 
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